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1 Introduction

Heap allocation with copying garbage collect ion is widely believed Io have poor niernorv snbs' e•xi
performance 130, 37, 38, 23, 391. To investigate this, we conducted an extensive study of memory
subsystem performance of heap allocation intensive programs on memory subsystem organizations

typical of many workstations. The programs. compiled with the SIL7N.1 compiler '3', do trenten-
dous amounts of heap allocation, allocating one word every to -1 to 10 instructions. The pr(ograms
used a generational copying garbage collector to manage their heaps. To our surprise. we fo'und
that for some configurations corresponding to actual machines. such as the DECStation 5000 2011.
the memory subsystem performance was comparable to that of C and Fortran programs t0: pro-
grams ran only 16% slower than they would have with an infinitely fast memory. T[his performance
is similar to that for C and Fortran programs For other configurations, the slowdown was 4ften

higher than 100%.
The memory subsystem features important for achieving good perforrmance with heap allocat ion

are subblock placement with a subblock size of one word combined with write-allocate on write-
miss, a write buffer and page-mode writes, and cache sizes of :32K ,or larger. Iteap alhicati,
performs poorly on machines which do not have one or more of these features: this includes most

current workstations.
Our work differs from previous reported work '30. 37. 38. 23. 39' on memory subsystem perfor-

mance of heap allocation in two important ways. First, previous work used orcmi'l iss r-atio., a-
the performance metric P'id neglected the potentially different costs of read and write misses. Over-
all miss ratios are misleading indicators of performance: a high overall miss ratio does riot always
translate to bad performance. We separate read misses from write misses. Second. previous work
did not model the entire memory subsystem: it concentrated solely on caches. Mlemory subsystem
features such as write buffers and page-mode writes interact with the costs of hits and misses in

the cache and should be simulated to give a correct picture of memory subsystem behavior. We
simulate the entire memory subsystem.

We did the study by instrumenting programs to produce traces of all memory references. We
fed the references into a memory subsystem simulator which cafculated a performance penalty due
to the memory subsystem. We fixed the architecture to be the MIPS R3000 '221 arid varied cache

configurations to cover the design space typical of workstations such as DECStations, SPARCSta-
tions, and HP 9000 series 700. All the memory subsystem configurations we studied had a write
buffer and page-mode writes. We studied eight substantial programs.

We varied the following cache parameters: size (8K to 128K), block size (16 or 32 bytes).
write miss policy (write allocate or write no allocate), subblock placement (with and without).
and associativity (one and two way). We simulated only split instruction and data caches. i.e..

no unified caches. We report data only for write-through caches but the results extend easily to
write-back caches (see Section 5.2).P

Section 2 gives back6;ound information. Section 3 describes related work. Section I describes
the simulation methods used, the benchmarks used, and the metrics used to measure memory

subsystem performance. Section 5 presents the results of the simulation studies., arid an analysis
of those results. Section 6 concludes.
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2 Background

The following sections describe memory subsystems, copying garbage collection, SNIL. and tile
SML/NJ compiler.

2.1 Memory subsystems

This section reviews the organization of memory subsystems. Since terminol,,gy for memorv sub-
systems is not standardized we use Przybylski's terminology '31',.

It is well known that CPUs are getting faster relative to DRAM memory chips: main mem,,r\
cannot supply the CPU with instructions and data fast enough. A solution to this probleim is to,
use a cache, a small fast memory placed between the CPU and main memory that holds a subset of
memory. If the CPU reads a memory location which is in the cache, the value is returned quickly.
Otherwise the CPU must wait for the value to be fetched from main memory.

Caches work by reducing the average memory access time. This is possible since memory
accesses exhibit temporal and spatial locality. Temporal locality means that a mnemor" 1, -cat iOn
that was referenced recently will probably be referenced again soon and is thus worth .trimrz In
the cache. Spatial locality means that a memory location near one which was referenced recently
will probably be referenced soon. Thus, it is worth moving the neighboring locations to the cache.

2.1.1 Cache organization

This section describes cache organization for a single level of caching. A cache is divided into blocks.
each of which has an associated tag. A cache block represents a block of memorv. Cache blocks
are grouped into sets. A memory block may reside in the cache in exactly one set. but may reside
in any block within the set. The tag for a cache block indicates what memory block it holds. A
cache with sets of size n is said to be n-way associative. If n=l, the cache is called direct-mapped.
Some caches have valid bits, to indicate what sections of a block hold valid data. A subblock is
the smallest part of a cache with which a valid bit is associated. In this paper, subblock placement

implies a subblock size of one word, i.e., valid bits are associated with each word. Moreover. on a
read miss, the whole block is brought into the cache not just the subblock that missed. Przybylski
!311 notes that this is a good choice.

A memory access for which a block is resident in the cache is called a hit. Otherwise. the
memory access is a miss.

A read request for memory location m causes m to be mapped to a set. All the tags and valid
bits (if any) in the set are checked to see if any block contains the memory block for in. If a cache
block contains the memory block for m, the word corresponding to m is selected from the cache
block. A read miss is handled by copying the missing block from the main memory to the cache.

A write hit is always written to the cache. There are several policies for handling a write miss.
differing in their performance penalties. For each of the policies, the actions taken on a write miss
are:

1. write no allocate:

"* Do not allocate a block in the cache

"* Send the write to main memory, without putting the write in the cache.

2. write allocate, no subblock placement:
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"* Allocate a block in the cache.

"* Fetch the corresponding memory block from main memory.

"* Write the word to the cache and to memory.

3. write allocate, subblock placement':

* Allocate a block in the cache.

* WVrite the word to the cache and to memory.

e Invalidate the remaining words in the block.

Write allocate,,subblock placement will have a lower write miss penaltv than i'rit, allouat, no

subblock placement since it avoids fetching a memory block from main mciorv. In additii,ii. it

will have a lower penalty than write no allocate if the written word is read befo(re [lJ.io- c\ltetf
from the cache. See Jouppi !21; for more information on write !fiss policies.

A miss is a compulsory miss if it is due to a memory block being accessed for the first Tine.
A miss is a capacity miss if it results from the cache (size (C) n,,t being big enough to, h,,I( all tie

memory blocks used by a program. This corresponds to the misses in a fully associative cac',w 4f

size C with LRU replacement policy (minus the compulsory misses). It is a conflict miss if it results

from two memory blocks mapping to the same set. 19
A write buffer may be used to reduce the cost of writes io main nienorv. A-u rilt, HHT ' a

queue containing writes that are to be sent to main memory. When tle ('P d (tos a 11,t0e. lie
write is placed in the write buffer and the CPU continues without waiting for tile write , lin ifh.

The write buffer retires entries to main meniorv using free nemrnorv cvcles .. \ Awit, 1uiif, r .,tMI1

occurs if the write buffer is full when the CPU tries to do a write or tries to read a location queeiel
up in the write buffer.

Main memory is divided into DRAM pages. Page-mode writes reduce the latency of writes to
the same DRAM page when there are no intervening memory accesses to another DRAM page.

2.1.2 Memory subsystem performance

This section describes two metrics for measuring the performance of memory subsystems. One
popular metric is the cache miss ratio. The cache miss ratio is the number of mneviorv accesses t hat

miss divided by the total number of memory accesses. Since different kinds of memorv accesses
usually have different miss costs, it is useful to have miss ratios for each kind of access.

Cache miss ratios alone do not measure the impact of the memory subsystem on overall system
performance. A metric which better measures this is the contribution of the memory subsystem It
CPI (cycles per useful instruction2 ). CPI is calculated for a program as number of ('f'!"', to
complete a program / total number of useful instructions ezecuted. It measures how e•ticiemt Iv" lie

CPU is being utilized. The contribution of the memory subsystem to CPl is calculatedt as untber of

CPU cycles spent waiting for the memory subsystem , total number of uscful instructio,,•. ,'ut'td.
As an example, on a DECStation 5000/200, the lowest CPI possible is I. completing oine Inst ruct ion
per cycle. If the CPT for a program is 1.50, and the memorv contribmtion to( Cl'l is 0.3. 21)"'C o,f

the CPU cycles are spent waiting for the memory subsystem (the rest may be dlie to ,,ther causes

'Recall subblock size is assumed to be I word.

2All instructions besides nops are considered to be useful. A noup (null ,peration) instructi,,n 1'. sotwtare

controlled pipeline stall



0 check for heap overflow
cmp alloc+12,top
branch-if-gt call-gc
% write the object
store tag,(alloc)
store ra,4(alloc)

store rd,8(alloc)
% save pointer to object
move alloc+4,result

% add 12 to alloc pointer
add alloc,12

Figure 1: Pseudo-assembly code for allocating an object

such as nops. multi-cycle instructions like integer division. etc.). ('Pl is niaciitie dependent 1i1ice

it is calculated using actual penalties.

2.2 Copying garbage collection

A copying garbage collector '17. It reclaims an area of memory by copving all t lie liv, ,rm-
garbage) data to another area of memory. This means that all data in the garbage-collected area
is now garbage, and the area can be re-used. Since memory is always reclaimed in large c',iiinZI,,IS
areas, objects can be sequentially allocated from such areas at the cost of only a few instruct ions.
Figure 1 gives an example of pseudo-assembly code for allocating a cons cell. ra contains the car
cell contents, rd contains the cdr cell contents, alloc is the address of the next free word in the
allocation area, and top contains the end of the allocation area.

The SML,'NJ compiler uses a simple generational copying garbage collector 27. .Memorv is
divided into an old generation and an allocation area. New objects are created in the allocation
area; garbage collection copies the live objects in the allocation area to the old generation. freeinig
up the allocation area. Generational garbage collection relies on the fact that most allocated objects
die young; thus most objects (about 99% i3, p. 206') are not copied from the allocation area. This
makes the garbage collector efficient, since it works mostly on an area of memory where it is very
effective at reclaiming space.

The most important property of a copying collector with respect to memory subsvstern behavior
is that allocation initializes memory which has not been touched in a long time and is thus unlikely
to be in the cache. This is especially true if the allocation area is large relative the size oif the
cache since allocation will knock everything out of the cache. This means that for small caches
there will be a large number of (write) misses.

For example consider the code in Figure 1. Assume that a cache write miss costs 16 ('Pt' cvcles
and that the block size is 4 words. On average, every fourth word allocated causes a write miss.
Thus, the average memory" subsystem cost of allocating a word on the heap is 4 cycles. [lie average
cost for allocating a cons cell is seven cycles (at one cycle per instruction) plus 12 cycles for the

memory subsystem overhead. Thus, while allocation is cheap in terms of instruction counts, it is
expensive in terms of machine cycle counts.



2.3 Standard ML

Standard ML (SML) 129' is a call-by-value, lexically scoped language with higher-order f'u1cM Pills.
garbage collection, static typing, a polymorphic type system, provable safety properties. a sophis-
ticated module system, and a dynamically scoped exception mechanism.

SML encourages a non-imperative programming style. Variables cannot be altered once they
are bound. and by default data structures cannot be altered once tley are created. lisp's rplaca
and rplacd do not exist for the default definition of lists in SNIL. The only kinds f fassiiilable data
structures are ref cells and arrays 3 , which must be explicitly declared. TO emphasis the point.
assignments are permitted but discouraged as a general programming stvIe. Tile implications of
this non-imperative programming style for compilation are clear: SM1. programis I led to do nmore
allocation and copying than programs written in imperative languages.

SML is most closely related to Lisp and Scheme 33,. Implenmentat ion lechniques f:,r ,ie f hi,>e

languages are mostly applicable to tile other languages. with the followin•' caveats: Sldi I. prgraruts
tend to be less imperative than Lisp or Scheme programs and Scheme and S.NIl. prw,,ralns use
function calls more frequentlv than Lisp. since recursion is tlie itsual way t,, achieve ilierattion in
Scheme and SNIL.

2.4 SML/NJ compiler

The S.NIL NJ compiler :; is a publiclv available compiler f, r S.NIL. We used vrýi,,n 1)91. - } he
compiler concentrates in making allocation cheap and futnctiiin call., fast..All,' d ,ti
line. except for the allocation of arrays. Aggressive 3-reduction (inlinimu.) is tuýed i,, eliminate
functions calls and their associated overhead. Function argumeui t S are pa[..vd in: rei.,ioers %'whei
possible, and register targeting is used to minimize register shulfluing at function calln. A ,plit
caller/callee-save register convention is used to avoid excessive spilling of registers. lie comnpiler
also does constant-folding, elimination of functions which trivially call other functions, limited code
hoisting, uncurrying, and instruction scheduling.

The most controversial design decision in the compiler was to allocate procedure act ivation
records on the heap instead of the stack -1, 51. In principle. the presence of higher-,,rder .iinctions

means that procedure activation records must be allocated oti tlie heap. Wit h a nuit able analysis.
a stack can be used to store most activation records 2 1'. However, using only a lea)p simplifies
the compiler, the run-time system 2., and the implementation of first-class comntinuatio ns I ..
The decision to use only a heap was controversial because it greatly increases the amount of heap
allocation, which is believed to cause poor memory subsystem performance.

3 Related Work

There have been many studies of the (ache behavior of svstems using heal) allocation and N, inue ftorni
of copying garbage collection. Peng and Sohi 31); examined the data cache behavior ,if oimne small
Lisp programs. They used trace-driven simulation. and proposed an A LLOCAl'I1 itE .tructiion fir
improving cache behavior, which allocates a block in the cache without fetching it from mnemniirV.
Wilson et. al. 37. 38& argued that cache performance of programs with generationial garbage
collection will improve substantially when the youngest generation fits in tile cache. Koopnian ,t.
al. .23. studied the effect of cache organization on contbinator graph reduct ion, an impletuhemtat ion

3AIthough the language definition omitted arrays. all implementations have array.



technique for lazy functional programming languages. Combinator graph reductiion (l,.s more
heap allocation and assignments than SML N.J programs. They observed the importance of a

write-allocate policy with subblock placement for improving heap allocation. Zorn 393 studied the

impact of cache behavior on the performance of a Common Lisp system, when stop-and-copy and

mark-and-sweep garbage collection algorithms were used. Hie concluded that programs run with
mark-and-sweep have substantially better cache locality than when run with stop-and-copy.

These works all used data cache miss ratios to evaluate cache performlance. They did rnot

separate read and write misses. despite the different costs of these misses. Also, they did ,ot

simulate the entire memory subsystem. Our work separates read misses from write misses and
completely models the memory subsystem, including write buffers and page-mode writes.

Appel '31 estimated CPI for the SNILiNJ system on a single machine using elapsed time and
instruction counts. His CPI differs substantially from ours. Apparentlv instriictiiins were under-

counted in his measurements '4'.
Jouppi '211 studied the effect of cache write policies on the performance of C and Fortran

programs. Our class of programs is different from his. but his conclusions support ours: that a
write-allocate policy with subblock placement is a desirable architecture feature. Hi(, i';,ind ihat
the write miss ratio for the programs lie studied was comparable to the read miss rati,,. and that

write-allocate with subblock placement eliminated the cost of write misses. For progrants cotmp)iled
with the SML/NJ compiler. this is even more important due to tie high numbner 4f write nlttss

caused by allocation.

4 Methodology

We used trace-driven simulations to evaluate the memory subsystem perforrmance of prograins.

For trace-driven simulations to be useful, there must be an accurate simulation model and a good
selection of benchmarks. Simulations that make simplifying assumptions about important aspects

of the system being modeled can yield misleading results. Toy benchmarks, or unrepresentative
benchmarks, can be equally misleading. We have devoted much effort to address.ing these issues.

4.1 Tools

We have extended QPT '7. 25, 261 to produce memory traces for SNIL NJ programs. OPT rewrites
an executable program to produce a full instruction and data trace. Because QPT operates ont the

executable program, it can trace both the SML code and the garbage collector (written in C).
We used Tycho i20 for the memory subsystem simulations. Tvcho uses a special case of all-

associativity simulation r28] to simulate multiple caches concurrently. We have added a write-buffer
simulator to Tycho, which concurrently simulates a write buffer for each instruction and data cache

pair being simulated. The write-buffer simulator also takes page-mode writes an(d memory refreshes
into consideration.

4.2 Simplifications and Assumptions

We wanted to simulate the memory subsystems as completely as we could. Thus, we have tried to
minimize simplifications which may reduce the validity of our data. The most important sinIplifi-
cations are:

1. We ignore the effects of context switches and system calls.
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2. Our simulations are driven by virtual addresses even tough manil% current machines have
physically-addressed caches.

3. We use default compilation flags which enable extensive optimizations. We set the soft limit
of the garbage collector to 20000K 4 .

4. When comparing different cache organizations we assume that the CPU cycle time is the

same.

4.3 Benchmarks

Table 1 describes the benchmark programs 5 . Kruth-Bendix. Lczgen. Life, Simplc. VI'IIV. and

Y4CC are identical to the benchmarks measured by Appel 36. Table 2 gives the sizes f ilie

benchmarks in terms of lines of SNIL code (excluding comments and blank lines). maxiimimn heap

size in kilobytes, size of the compiled code in kilobytes (does not include the garbage collector arti
other run-time support code which is about 60K) 7 . and run time. in seconds. otl a Dh•CStation

5000/200. The run times are the minimum of hive runs.

Table 3 characterizes the memory references of the benchmark proaramns. The 11'rilcs column

lists the number of full word writes done by the program and the garbage collector: the .As•signmcnts

column lists the non- initializing writes (lone by the program milv. The Partial cIIri,. 7 c,,lumnn lists
the number of partial word (bytes, half-word. etc.) writes done by the iprgrain and the ,2arl)ba,,e

collector 8 . All the benchmarks have long traces; nmist other work on mTIemo,,ry ý'vslt.c perf,,rniaiice

uses traces that are an order of magnitude smaller. The benchmark programs do fe . assignments:
the majority of the writes are initializing writes.

Table 4 gives the allocation statistics for each benchmark program :\Al allocation and sizes
are reported in words. The .4llocation column lists the total allocation done by the benchmark. The

remaining columns break down the allocation bv kind: closures for escaping functions. closures for

known functions, closures for callee-save continuations10 , records, and others (includes spill records,

arrays, strings, vectors., ref cells, store list records. and floating point numbers). For each allocation

kind, the 5 column is the percentage of total allocation allocated for that kind of object and Size
is the average size (including the I word tag) for that kind of object.

4.4 Metrics

We state cache performance numbers in cycles per useful instruction (CPI). All instructions besides

nops are considered useful.

4 This is large enough to allow the garbage collector to resize the heap as needed.

rAvailable from the authors.

6The description of these benchmarks have been copied from 3'.

'The code size includes 207K for the standard libraries.

aPartial-word writes are distinguished from full-word writes since they are often more expensive than full-word

writes. We charge I1 cycle, for each partial-word write.

9This table corrects one given in the POPL '94 paper, which did not include allocation data for floating point

numbers. Our thanks to Darko Stefanovicý for bringing this to our attention.

"°Closures for callee-save continuations can be trivially allocated on a stack in Ithe absence of first class

continuations.
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Program Description________ -

CXV The Concurrency Workbench 12 is ai tool for analvzixig iet%%work~s of finlite
_________state processes expressed in Mlilne~r' C(alculus of Commiunicating Svst Cuts.

Leroy [An implementation of the Knut ii Berilix corlnplet ion1 ilgorli In.

Lexgen A lex ical- aria] Yer generator 6' processing the lexical descript oil of St an-
dard L _ ____

Life The gamne of Life implemented using lits ':2.

P IA The Perspective Inversion Algorithm 36i~ decides thec locatijon of all objecttin a perspect ive idimage.
Simple LA spherical fluid-dynaniics program 13'.

VL 'I\NV A V'ery- Lon)g-Ilustruc(t ioni- \VordI list ruction scliedutler.

YACC An implementation ofait LA Lt( 1) parser genierator 35 r.c~s~griegat

mar of Standard\1 .__ -

Table 1: Blenchmrark. Programs

Pro grain lines Heap size (N Xesz(K) Noll-gc (sec I

CW NN57,28 110T 891 '22.7.1
Knuth-Bendix 491 275 21 13.47, 1.19

Lexgen 1224 216_2 3051507 MO

Life 111026 2116.97 0.19
P-iI-A 1454 -1U-5k 291 6.07 0.34
Simple 999 -11371 314 2S.58 --- --
VL I .113207 1088 .186 '23. 70 _ I 1.9)

YACC .5751 ,1632 380 4.60 1.98

Table 2: Sizes of Benchmark Programs

Program Inst Fetches Reads (%-) Writes () Partial Wrts() .sitMent o .ps (¼)-

CW 523,245,987 17.61 11.61 0.01 11-11 13.2
Knuth-Bendix .312.086.4 38 19.66 22.31 0.00)I OjO 12

Lexgen 382,23 16.081.4 0.20 I'1'1

Life .113,536,662 12.18 9.2 1; 0.00 0.0 1001
PIA 122,215,151 25.27 16.50 0.00 0.06) 8.39

Simle604,611,016 I 23.86 1..60.00 7.58
VLIW 399,812,033 . 17.89 . 15.99 0.10 0ý7 9041

YACC 133,043,32.4 18.49 14.66 0.32 0. 38 11.1It

Trable 3: Characteristics of benchimark programs
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Allocation Escaping Knoun Callee Saved Rhc ,rds . ( her-

Program (words) % SS Size ;Size Si ize i

CW 56,467,440 -1.0 4.12 3.3 15.39 67.2 C 20 19.5 3.Ll 6.,) 4.,,)

Knuth-Bendix 67,733,930 37.6 6.60 0.1 15.22 49.5 4.90 12.7 3.00 0.1 15m5

Lexgen 33,046,349 3.4 6.20 r 5.4 12.96 72.7 6.40 15.1 3.00 .3.7 6.9 7
Life 37.840,681 0.2 1 3.4-5 0.0 15.00 77.8 5.52 2'2.'2 3.00 0.', 10.29

PIA 18.841,256 0.. 5.56 28.0 11.99 25.0 ,1.69 1'2.7 3.11 .33,.9 3.22
Simple 80.761.64.4 .1.0 5.70 1.1 15.33 68.1 6.13 4. " ' -Ou IS.5 3.11
VLIW 59.497.132 . 9.9 5.22 6.0 26.62 . 61.81 7.67 20.3 3.01 2.1 2.60

YACC 17.015.250 2.3 4.83 15.3 15.35 54.8 7.14 23.7 3.01 -4.0 10..

Table 1: Allocation characteristics of benchmark progralus

Table 5 lists the penalties used in the simulations. These numbers are derived Fromn tile penalties

for the DECStation 5000 '200, but are similar to those in other machines of the sarne class. Note

that write misses have no penalty (besides write buffer costs) for caches wit It -ubblock placement('I

5 Results and Analysis

Section 5.1 qualitatively analyzes the memorv behavior of programs. Seclin :5.2 listýs he cache,

configurations simulated and explains why t hey were selected. Sections .5.3 presents and analkvzes
data for memory subsystem performance.

5.1 Qualitative Analysis

Recall from Section 2 that SML/NJ uses a copying collector which leads to a large number of write
misses. The slowdown this translates into depends on the cache organization being used.

Recall from Section -4.3 that SML/NJ programs have the following propert ies. First. they do few.
assignments; the majority of the writes are initializing writes. Second, programs do heap) allocat ion
at a furious rate: 0.1 to 0.22 words per instruction. Third, writes come itn bunches because they
correspond to initialization of a newly allocated area.

The burstiness of writes combined with the property of copying collectors mentioned abiyve
suggests that an aggressive write policy is necessary. In particular, writes should not stall the
CPU. Memory subsystem organizations where the CPU has to wait for a write to be written to
memory will perform poorly. Even memory subsystems where the CPU does not need to wait for

writes if they are issued far apart (e.g., 2 cycles apart in the liP 9000 series 700) may perforrm
poorly due to the bunching of writes. This leads to two requirements on Ile mnemnorv subsystem.
First. a write buffer or fast page mode writes are essential to avoid waiting for writes to memorv.
Second, on a write miss, the memory subsystem must avoid reading a cache block from tnemorv if
it will be written before being read. Of course, this requirement onl v holds for caches wi t It ita wrle-

allocate policy. Subblock placement '231. a block size of 1 word, and the ALLOCATE directive 30)
can all achieve this' 2 . For large caches, when the allocatio'n area fits in the cache and thbus there

"tIn an actual implementation. the penalty of a miss may be one cycle since unlike hits. the tag and %alid bit.
needs to be written to the cache after the miss is detected. This will not change our results since it adds at m,n,,
0.02-0.05 to the CPI of caches with subblock placement.

"2 Since the effects on cache performance of these features are so similar, we talk just about •ubblck placement
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Task l'enalIN IIn N .es

Non page miod e write

Page mode write
Read 16 bytes from mneinorv
Read 32 bytes fromn miemorv 19
Write hit or miss (subblocks) I

Write hit (16 byi es.. no subblocks)
Write hiit (32 bytes, no siihhlocks )

-Write miiss ( 16 bvtes, no subblocks)
WVrite mniss (32 hu Ies. no subhtncks) I19

Tab~le 5: Penalt ies of metliorv IM Yrat imis1

W\rite Policy Write Miss PolIicNy Write Riolter Subbhlioks As.soc Block Suize C( '.he

I lrotigh allocate G deep %CS 1. 2 161 1,%t, K 12' K
throu gh allocate I; deep n I I t) I hý 2 163 ")\,!K 12' K

through no allocate 6 deep -no . 2 u 112 b sýK 128 K

Table 6: ( ache or~tia ls itiiledl

are few write misses. t lie beniefit of silbl) ictk lplacemiemi wIll he reluced.

5.2 Cache configurations simnulated

Since the design space for memory suhsvst ems is etiorl"iotis We haid to prime the uieslgni space thiat
we could study. In this stud ' , we restrict ourselves to features found ini currently popuflar RISC

workstations. Exploration of more exotic rnemd 'rV SIIbSVStVI erii fatreS IS left to) fuiitire w irk. lable
6 summarizes the cache orgatizationis sinitilat ed. l'able 7lists~ thle 1cmeir iJ'V nsvsitII tillii ri/aIt 111

for some popular machines.
We simulated only' separate inst ruct ion anid diata Cach~es (I.e., 11o 11iiiliel Cache0s). \\ Ii le tTIanv

current machines have separate caches (e.g.. I) ['Stat ioiis. HIP 7100 series). there are somie except bu[S

(notably SPARCs).
WVe simulated cache sizes from SK to 128K. This range includes the primiarY caches of' most

current machines (see Table 7). We consider only direct mapped and two- way set associative cacites
(with LRU replacement).

W~e simulated block sizes of 16 byites amid 321 bvt es. Przvbvlski I 31iiites thiat block 4ie of6

or 32 bytes optimize thle read access timne for thle tleMnorV paramtieters used I iii e ( j) calculii l"Ii

(see Section 1.1).
AWe report data only for write-tfhr nigh cachies hotit ihe C'P1 for write- lack caclies can he IinferredI

from our graphs. Write-throuigh and write- hack caches give identiical miiss~es. buit tI( lie leallt ie t.)

write hits and write misses differ. A write hit or tmiss in a write- hack cachie niao.- t ake, lie cycle

more than in a write- t lirough cache 2 1 . This tells uis at most how much l ie writ I- tIr g graphs
need to be shifted to obtaitn the CPI graphs for write- back caches. F-or inst atice, If' lie- pt uzramt
has w writes and 71 USeful) instruct ions, tien we must add w n. to the ('P. :o~r CW this adds (0.13.

Write-through and write- hack caches may have different write buffer penailt ies. W\e expe)ict t lie write
buffer penalties for write-back caches ito be snialler t han (fat for write- t lirouigli caclies sinice writes

10I



Architecture -writ e IPulIcv -Write- -Miss P..lw I V- rit e Hottfe-r- si bl,h.i ks Ac H I- k Su ('che. ize

-S-3]10O '6trug loct deep 1 4 I s K

'DS5OOO. 200 '15' thrnugh allocate 6 deep yes I 1 NIC hso 61K

HP 9000 ý34' back allocate tnone n o 1 3 2 1; tes F4K -2.%
SPARCStation 11 14' through no allocate 4 deep no 1 32 b,. tes t.1

Note;

o SPARCStations have unified caches.

* Most HP 9000 series 700 caches are much srnailer than 2\1, !: 18K .ristruct-.v, .hcue arid 25Kton ac':, :.,r. is7

and 7,30, and 256K instructi,,n cache and 256K data cache flr in...e! 750.

* The DS5000, 200 actually has a biock size 4 for byýtes w~tn a ertchl size -f $,,teen t.. les .h's nct !.. rti,.
subblock placement since it has a 'till tag ,n everN -SutitiCK

* The higher end HP 9000 machines fmude 73L a~nd at,, ,- :I 1:ft Iu hd e 5i.................... -

The hint can specifY that a flickct will bie *,erwritteti tiette rie;:i.4 read. - -.5 r,, .. A e . 1 -

Table '7: \lemorv siibsvst em irganiliat Nm i 4 ,linto I) putlar Min i)I*IV

to main memory are less frequent for write- hack caches t hart fir \vrite hr 'l'irivo atit.: lý i-,ei'

writ- buffer penalties are negligible even for writ c-i hirouttzh cachesý ý itt 7

Two of the most *important cache parameters are tirit, ul,/v-att vvrsuas ttri ,,iH :1.1 il- ii:tj

block placement versus no .stbblock placcement. Of 1,lise. thle ci:nhib nat. killt writ, t, " ,i ':ý-_-

placement offer no improvement over w-rite no ()jii'(JtC no -ýubblcick plar ' nt rit i'r (t ;oe ;e r'

mnance. Thus. wve did not collect data for thle w.rite nto alloicttf.s t,uh~lck p/iac pit. oj ~iitr
We restrict ourselves only to the first two levels, of Ithe niernorv hijerarcit v. % hi~ hL n-ý. r

machines corresponds to the primary cache and mnainl memOry. I-le reult s. iiw\ever. are
applicable when the second level Is a secorndary cache arid the cost o)f accessiniz- he ~ec''Ildar,-c: il
is similar to the cost of accessing main memory* on thle D)EQ Stat h rt.500)0 2011-: . It K itci : achii'-.

there is a memory subsvstem cont ributiont to the CPI that we did not mneasure: it riilý, ., 'iie eticý.nIti

level cache. Therefore the CPI obtained on these machines can be higher than !hat ):n.re ero.

We do not simulate the exotic features appearing on some newer mnacninie,. 11('11 As !rr

buffers, prefetching, and victim caches. rhese features can reduce the icithe 111t:ý rate mi. i -tta

costs. Further work is needed to understand the impact of these feat tire, oni perf..rmntare ,I hteap

allocation.

5.3 Memory Subsystem Performance

Miemory subsystem performance ts presented in summary graphs and lbreakdiiwnr .iranphs. 11ath
summary graph summarizes the memory subsyvstemn performance o)f one Ibertchirark pr-utram .-

a range of write-miss policies (write allocate or no write allocate). subblilirk plai-rtitent x vi L itr

without), cache sizes (8K to 128K), and associativitv (1I or 2). Fach curve IIn a '11tm11ilr\ i!raplt

corresponds to a different memnoryv subsYstem organization. There are 1\%-, iinirnarv _,rapfi. foI

each program, one for a block size of 16 bYtes and another for a block size iif 32 b\)Vtt. Lacilc

breakdown graph breaks down thle memory subsyst em overhead Into readi nt-.Intritruti nit hivi

misses, write-buffer overhead, and partial-wxord write overhead for one t* fivtiturat iItI itt a ýuintt ar%
graph. The write-buffer depth in these graphs is fixed at 6 entries.

13 For instance. Borg et al. 8) use 12 cycles as the latency for going to the sc,imnd lesecl -i lit hesind 2o Hi-5

for going to memory.



In this paper we present only the summary graphs for CW (Figure 2). The surminarv graphs
for other programs are similar to those for CW and are thuis omitted for space coinsiderat iow. A I]v
significant differences between CMs graphs and the omitted graphs are noted in the text. Figures
3 and 4 are the breakdown graphs for CW for the 16 byte block size configurations: the remaining
breakdown graphs for CW are omitted for space considerations. The breakdown graphs for the other
benchmarks are similar and are thus also omitted for space considerations 14.

In the summary graphs, the nops curve is the base CPI: the number of useful (riot i•,p) ini-
structions executed divided by the total number of instruct ion executed; this correspomids t,, Ihe

CPI for a perfect memory subsystem 15 . For the breakdown graphs, the nop area is th, C(N cont-
tribution of nops; reed miss is the CPI contribution of read misses, if miss is the CPI contribtut ion
of instruction fetch misses; write buffer is the CPI contribution of the write buffer: partial word is
the CPI contribution of partial-word writes16

The 64K point on the write alloc, subblock, assoct I curves corresplodls cltselv I,, the D)VCK(S' a-
tion 5000/200 memory subsystem.

In Sections 5.3.1, 5.3.2, 5.3.3, and 5.3.4 we describe the impact of write-miss policy and subblock
placement, associativity, block size. and cache size on the mem,,rv subsystem perfoirmalnce o)f lho
benchmark programs. In Section 5.3.5 we give the write buffer and partial-word write overheads.

5.3.1 Write Mis.s Policy and Subblock Placement

From the summary graphs, it is clear that the best cache organization we studied is write ,zllo-
cate/s ubblock placement; in every case, write-allocate subblock placement substatt iallv outperforms
all other configurations. Surprisingly. for sufficiently large caches with the write allocate subblock
placement organization, the memory subsystem performance of S.IL NJ programs is acceptable
(around 17% or less overhead)1'7 . For caches with write allocate, subblock placement. the average
memory subsystem contribution to the CPI over all benchmarks is 16% for 64K direct mapped
caches and 17% for 32K two-way associative caches. The DS5000/200 organization does well for
most programs. It is worth emphasizing that the memory subsystem performance of S.ML 'NJ
programs is good on some current machines despite the iery high miss rates: for a 64Ki write allo-
cate/no subblock placement organization with a block size of 16 bytes, the write miss and read miss
ratios for CW are 0.18 and 0.04 respectively.

Recall that in Section 5.1 we argued that subblock placement would be a big win, but its
benefits would decrease for larger caches. Our data indicates that the reduction in benefits is not
substantial even for 128K cache sizes although a slight tapering off is seen in CW. This indicates
that 128K is not large enough to hold the allocation area of most of the benchmark programs.

The performance of write allocate/no subblock is almost identical to that of write no allocate no
subblock (Leroy is an exception). This suggests that an address is being read soon after being
written; even in an 8K cache, an address is read after being written before it is evicted from the
cache (if it was evicted from the cache before being read, then write allocate no subblock would
have inferior performance). The only difference between these two schemes is when a cache block

1'
4 Lexgen's graphs are a little different in that there is a steep drop in the instruction cache contribution to the

CPI in going from an 8K to 16K cache.

isnops constitute between 5.9% and 15.4% of all instructions executed for the benchmarks (see Section 4.3).

"6 This ov.rhead is so small that it is not visible in most of the breakdown graphs.

"T For the penalties used, a 17% overhead translates roughly .into one fetch from memory--instruction or data-

every 100 useful instructions.
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is read from memorv. In one case. it is brought in on a write miss: in tle ,iheir. it ir, brt,,iilit iII

on a read miss. Because S. I L NJ programs allocate sequentially arid do fe;w a 'itir,,, erit . a tilek I l
allocated object remains in the cache until the program has allocated another C bvt',s. %here C is
the size of the cache. Since our programs allocate 0.4-0.9 bytes per instruction. our results suggest
that a read of a block occurs within 9K-20K instructions of it being written.

5.3.2 Changing Associativity

From Figure 2 we see that increasing associativitv improves all organizat ions. lHiowever th(. improve-
ment in going from one-way to two-way set associativitv is much smaller than the imprwernent
obained from subblock placement: in most cases, it improves the ('P1 by less than 0.1. 'he
maximum benefit from higher associativitv is obtained f)r snmall cache sizes hes., than 1K I. Hi1w-
ever, increasing associativity may increase CPU; cycle t ime and thus t lie i miupr,,ven'tiet s ritav n1,t !w
realized in-practice J19.

From Figures 3 and 4 we see that higher associativity improves the instruction cache perfor-
mance but has little or no impact on data cache performance. The improveVtient ibserved in going

to a two-way associative cache suggests that a lot of the penalty from the instruct in cache i-, de
to conflict misses and that from the data cache is due to capacity misses: the data cache i, ,ýM )plv

not big enough to hold the working set. When the code produced by SNIL N.1 is examined, the.
performance of the instruction cache is not surprising: the code consists -if trall fimctint-t) v ,it %o
frequent calls, which lower the spatial locality. Thus. the chances lif conflict, are .!rvat,,r flan if
the instructions had strong spatial locality.

Surprisingly, for direct mapped caches (Figures 3 (a) and 4 (a)) the instructiion tache petaltv
is substantial for caches smaller than 128K. For caches with subblock placement. the inst ructrt
cache penalty dominates the penalty for the memory subsystem. The instruction cache penaiiv
is reduced by the two-way associative cache organizations, suggesting a large number of conflict
misses in the instruction cache.

5.3.3 Changing Block Size

From Figure 2 we see that increasing block size from 16 to :12 bytes also inmproves performance.
For the write allocate organizations, an increased block size decreases the numiber of write misses
caused by allocation. When the allocation area does not fit in the cache, doubling the bl,,ck si/e aan

halve the write-miss rate. Thus, larger block sizes improve performance when there is a penaltv
for a write miss '231. In particular, larger block sizes have little to offer to caches with urite
allocate/subblock placement. From Figure 2 we see that the writc no allocate organizatioms benefit
just as much from larger block size as write allocate/no subblock placement; this suggests that the

spatial locality in the reads is comparable to that in the writes.
Note that subblock placement improves performance more than even two-wav associativitv and

32 byte blocks combined.

5.3.4 Changing Cache Size

Increasing the cache size improves performance for all configurations. in most cases. the perfor
mance improvement from doubling the cache size is small. We expect tt) see a sharp improvemwnt
in performance for some larger cache size (perhaps 256K or bigger) once the allocation area fits
in the cache (this will not be nearly as significant for caches with subblock placement ). Front lie
breakdown graphs we see that the cache size has little effect on the data cache miss cotntrihution

13



to CPI. Most of the improvement in (CPT that co',rres from izireasirg hthe cache size is hiie to i m-
proved performance of the instructio,, cache. ;As with I associativitv. cache si/es have iMleracti,,zl
with the cycle time of the CPU: larger caches can take longer to acces::. Thus. imnpro'ernent due
to increasing the cache size may not be achieved in practice.

5.3.5 Write Buffer and Partial-Word Write Overheads

From the breakdown graphs we see that the write buffer and partial word write crontribution to the
CPI is negligible. A six deep write buffer coupled with page-mode writes is sufficient to absorb the
bursty writes. As expected. memory subsystem features which reduce the number oif misses (such
as higher associativitv and larger cache sizes) also reduce the write buffer overhead.

III



3-

w ~ ritellc ý-ubk-
'.6

wr*- c .noP. l jý bl .

2.4-

1.2

2.3 > write .floc riosubbik.assoc -

U 1.6o~~o~blk~=

1.4

1.2

SK 16K( 32K 64K 12.1K

I aid D cad,. size

(a) block size=16 bytes

Fiue2:.6 umay write buffer deptl&ýI6

2.4 riteno-dl-j-wbbk15



3-

2.6 - nt, butler

..... .

1.2 .. . .......... n '

.... .. . ... . ....
........~~~ ~ ~ ~ ~ ... .. .... ... .... ... ..-~ ~ ~ ~ ~ ~ ~ a .... s. -......... ..

.. .. ....... .. .- , ... ... .... .

.. .. ...... . ... ...... .. ..

.. ...6 . . ... .. .. .... .- .. ... ...

24 .. .....
t 

..... ..... ..... .....-... ~~~~n ..... .. .......
.............~~~i ....... ... . ..

..... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ e ..... ..... ....... ....... ...... ...
.. ... ...6... o

.. ~ ~6 .I i .. ...a...s.. .s.o.. .c.. .. .. ... ... .. .
.... ... . .. ..K . . ... .. .... ... c.dl . - `

... ~ ~ ig r 3. ...... t no .loc no .... k13oc .ie 16~ ' .... .ept.h .................



3

.6 -p

1.4 .... ..i .i.

..........

8K 16K 32K 64K K

I ~D cache size

(a) assoczz

3

2.8

ZAU psm.! word

S21 wore hutter

i ~. read miss

SK i6K 32K M4K 128K

I vdD ache size

(b) assocz2

Figure 4: CW,write alloc,subblk,block size= I6,wb depthz6

17



6 Conclusions

We described an in-depth study of tie memory subsvstenm performance of prograni-s rpiled wtt II
SML/NJ. The important characteristics of these programs, with respect to) menemorv .uk.sv•iter•

performance, were intensive heap allocation and the use of copying garbage collectiou.
In agreement with f30. 37, 38. 39., programs with intensive heap allocatiotn perfo rmied po r1V

on most memory subsystem organizations. However. on strile current rnachines (i parl ic Iular t lie

DECStation 5000, 200), the performance was good.
The memory organization parameter crucial for good perforrmance was subblock placeirnent. For

caches with subblock placement. the memory subsystem overhead was under I 7-'ý for 61,r 1 I,..r
caches; for caches without subblock placernent. the overhead was often as high as I

While associativity. cache sizes, and block sizes affected performance. iheir ,tnh rihn•it ,.
performance was usually small. Associativitv anid cache sites had 1itt1 ci iti p( ,,t ,11 a .,,i

performance, but were more important for instruction cache performanice.
To summarize, most current machines support heap allocation poorly. For these miachinmes.

compilers should avoid heap allocation as much as possible. lhowever. wit h tHie appr,,priahtt 1•n1't ,,.v
subsystem organization. heap allocation can achieve good tnernorv snubsvstemii perf'rminttioT.
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